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SUMMARY

Current age-specific reference standards for adult hearing thresholds are primarily cross-sectional in nature
and vary in the degree of screening of the reference sample for noise-induced hearing loss and other hearing
problems. We develop methods to construct age-specific percentiles for longitudinal data that have been
modelled using the linear mixed-effects model. We apply these methods to construct percentiles of hearing
level using data from a carefully screened sample of women from the Baltimore Longitudinal Study of Aging.
However, the variation in the residuals and random effects from the linear mixed-effects model does not
remain constant with age and frequency of the stimulus tone. In addition, the distribution of the hearing
levels is not symmetric about the mean. We develop a number of methods to use the output from the linear
mixed-effects model to construct percentiles that do not have constant variance. We use a transformation of
the hearing levels to provide for skewness in the final percentile curves. The change in the variation of the
residuals and random effects is modelled as a function of beginning age and frequency and we use this
variance function to construct the hearing percentiles. We present a number of approaches. First, we use the
absolute values of the population residuals to model the total deviation about the mean as a function of
beginning age and frequency. Second, we model the standard deviation in the person-specific (cluster) residuals
as well as the standard deviation in the estimated random effects. Finally, we use weighted least squares with
the regressions on the absolute cluster residuals and absolute estimated random effects where the weights are
the reciprocal of the standard deviations of their estimates. © 1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

Reference ranges or norms have wide usage in medicine. When the single variable of interest
follows a normal distribution, one usually computes the norms as the mean plus or minus
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a percentile of the standard normal distribution times the standard deviation. Frequently,
reference ranges are desired at each age. If the mean of the variable of interest can be modelled as
some function of age, one can construct percentiles as this mean plus or minus multiples of the
standard deviation. However, the standard deviation may not remain the same at all ages and
meaningful percentile curves must reflect this non-constant variance.

Royston' and Royston and Matthews? discuss the construction of reference centiles using
various models to describe the relationship between the response variable and the explanatory
variables. Cole and Green® and Green and Silverman* use a penalized likelihood method to
obtain percentiles when one models the relationship between the response and explanatory
variables using cubic splines with changing variation and skewness. Altman® models the absolute
residuals using linear regression and obtains an estimate of the standard deviation that changes
with the value of an explanatory variable.

In a previous study, Pearson et al.® described longitudinal patterns of change in hearing
thresholds from 416 women (age 20 to 90 years) followed for up to 13 years who had been
screened for otologic disorders, unilateral hearing loss, and evidence of noise-induced hearing
loss. In this paper, we begin with the output from the previous linear mixed-effects analysis’ to
construct hearing percentiles at various frequencies for these women. However, the distribution of
hearing levels about the mean is not symmetric and the amount of variability in the hearing levels
changes with age and frequency of stimulus tone. To overcome these problems, we transform the
data and develop methods to reflect this changing variability in the percentile curves.

We apply a logarithmic transformation to the hearing levels that have had a constant added to
ensure all of the values are positive. We refit these transformed longitudinal data using the linear
mixed-effects model. We then model the absolute residuals and random effects from the model for
the transformed data as functions of beginning age and frequency to obtain non-constant
standard deviation functions.

The principal goal of this paper is to illustrate how to calculate percentiles from longitudinal
data when the variance is not constant. We apply the methods developed to hearing threshold
data on a sample of women from a longitudinal study.

BACKGROUND
Study Population

The participants are female volunteers in the Baltimore Longitudinal Study of Aging (BLSA), an
open-panel multidisciplinary study of normal human ageing which began studying women in
1978 and which is conducted by the intramural research programme of the National Institute on
Aging.® Participants in the study are predominantly white (95 per cent), well-educated (over 75
per cent have a bachelor’s degree or higher), and financially comfortable (82 per cent) volunteers.
The participants are scheduled to visit the Gerontology Research Center in Baltimore at
approximately 2-year intervals where they stay for 23 days of evaluation and testing that includes
audiologic testing.

The present analyses exclude data from participants with otologic disease, unilateral hearing
loss, or evidence of noise-induced hearing loss.® Due to these exclusions, the final study group
consists of 416 women (71 per cent of the original group) evaluated at the BLSA between 1978
and 1991 with age at entry between 18 and 86 years. These women produced a total of 1331
audiograms with a mean of 3-2 visits and 52 years of follow-up (maximum of 129 years).
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Approximately 48 per cent of the women have 5 or more years of follow-up and 17 per cent have
10 or more years of follow-up.

Apparatus and Procedures

As part of the BLSA testing, participants completed continuous followed by pulsed pure tone
audiologic testing. In this paper we report the hearing threshold levels determined for 9 frequen-
cies (500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Hz) separately in each ear from a Bekesy
audiogram obtained using a pulsed pure tone generated by a Grason—Stadler audiometer (Model
1701). All thresholds are expressed in dB HL using the ANSI® standards.

Statistical Methods
The linear mixed-effects (LME) model has the form”-1°-1!
yi=Xiﬁ+Z,»bl+e,~, l=1,,M

where y; is the n; x 1 vector of observations for individual i, X; is the design matrix of independent
variables for the fixed effects for individual i, B is the p x 1 vector of fixed-effects parameters, Z; is
the design matrix of independent variables for the random effects, b; is the g x 1 vector of random
effects for individual i, e; is the n; x 1 random error vector, and M is the number of subjects in the
study. It is usually assumed that e; ~ N(0, ¢2I) and b; ~ N(0, D) and that e; and b; are
independent. The random component in the model, b;, allows for the natural heterogeneity in
intercept and partial slopes among individuals in the study so that each individual has her own
pattern of change over the time and frequency domains that differ from those of other subjects in
the study.

The fixed-effects parameters in the model, B, are estimated via generalized least squares, and the
variance components, ¢ and D, may be estimated either by maximum likelihood or restricted
maximum likelihood.'®!2 In this paper we estimate the variance components by restricted
maximum likelihood.

Mixed-effects models allow estimation of the average hearing level curve for the population
and also allow each subject’s estimated longitudinal change, inter-aural difference, and audiomet-
ric curve to deviate from the group average. The fixed effects estimate the average intercept and
rates of change for the independent variables, while the random effects represent the deviation for
each individual from the average intercept and slope terms. Thus, the random effects account for
natural heterogeneity in initial level, ear, patterns of longitudinal change, and audiometric shape
among the individuals in the study. Mixed-effects models provide a marginal covariance structure
among repeated measures within individuals that may adequately model the correlation within
subjects and allow the analysis of unbalanced data where individuals have differing numbers of
observations taken at varying intervals between the observations.

Arranging the terms in the mixed-effects model to see how the longitudinal change depends
upon first age and frequency, the initial model entertained for a hearing level observation on the
ith woman at time j and frequency k is

Vijk = (Bo + bio) + (B1 + by)ear; + (B, + byx)time;; + (B3 + bi3)In(freq)y
+ (B4 + biy)In?(freq)y + (Bs + bis)In®(freq)y + Bofage; + B-fage? + Pslage?
+ Bovisitl; + [Biofage; + P11 fage? + B,fage]

© 1997 by John Wiley & Sons, Ltd. Statist. Med., 16, 2475-2488 (1997)
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+ (B13 + Brafage; + Bisfage? + Biofage?)In(freq)y

+ (B17 + Bisfage; + Brofage? + Brofage?)in’(freq)y

+ (B21 + Paofage; + Brsfage? + ﬁ24fage?)ln3(freq)i]timeij

+ [B2sfage; + Basfage? + Ba-fage? + Bagvisitl;]In(freq)y

+ [Brofage; + Bsofage? + Bsyfage; + Bs,visitl;]In?(freq)y

+ [Basfage; + Psafage? + Basfage? + Bagvisitl;]In>(freq)y + e (1)

where longitudinal change is represented by follow-up time (time), cross-sectional age differences
are represented by polynomial terms for age at first visit (fage, fage?, and fage®), audiogram shape
is represented by polynomial terms for the natural logarithm of the frequency in kilohertz
(In(freq), In?(freq), and In(freq)), interaural differences are represented by the indicator variable
(ear), learning effects are represented by a contrast between first visit and subsequent visits using
an indicator variable (visitl), and e;j represents the statistical error term. Since only 38-5 per cent
of the women had more than three visits, the only longitudinal terms included in the model were
time and visit1 (that is, no time? terms were included). Previous analyses have shown that the use
of polynomials in In(freq) is an efficient and flexible method of modelling the audiogram
frequency-intensity function.!®:# Interaction terms are included that allow the longitudinal
patterns of change to differ with age at entry (fage x time), allow the audiogram shape to change
longitudinally (In(freq) x time) and with age at entry (In(freq) x fage). The visit1 x In(freq) interac-
tion terms allow the frequency intensity function at the first visit to differ from those at later visits
so that the learning effect may differ at the various frequencies. Three-way interactions between
fage, time and In(freq) are included to model differences in rate of change in thresholds at different
ages and frequencies.

We include six random-effect terms (b;o, b;1, bi», bi3, bis, and b;s) in the initial model to
account for natural heterogeneity among individuals with respect to hearing level (intercept),
interaural difference (ear), longitudinal pattern of change (time), and audiogram shape (In(freq),
In?(freq), and In*(freq)). Thus, each person’s hearing thresholds may have a level and audiometric
shape that deviates from the overall average, each person’s longitudinal pattern of change may
deviate from the overall average, and the degree of each person’s interaural symmetry/asymmetry
may vary from the overall average.

To reduce the multicollinearity among the polynomial terms, we centre the follow-up time and
first age variables on the mean follow-up time and age at first visit by subtracting the correspond-
ing means of 5 and 53 years, respectively, from time and fage. The most parsimonious well-
formulated model’® is obtained by backward elimination of the highest-order non-significant
polynomial and cross-product terms.

Results

The final model for describing female hearing levels contained 24 fixed-effects variables (omitting
fixed-effects terms numbered 8, 12, 16, 20, 21, 22, 23, 24, 27, 31, 34, 35, 36).° Longitudinally, at
higher frequencies and ages, hearing sensitivity declines, although hearing levels at 1000, 2000 and
4000 Hz improve slightly (< 2-0 dB per decade) for women under age 60. Hearing levels worsen at

Statist. Med., 16, 2475-2488 (1997) © 1997 by John Wiley & Sons, Ltd.



CONSTRUCTION OF HEARING PERCENTILES 2479

all ages for 500 Hz, after age 50 for 1000 and 2000 Hz, and after age 40 for 4000 Hz. The decline in
hearing sensitivity accelerates at approximately age 40—50. The cross-sectional and longitudinal
changes in hearing level do not differ appreciably.® Thus, there is little difference in the percentile
plots whether we use first age or age.

The women exhibited a statistically significant learning effect from the first visit to subsequent
visits. The estimated improvement in hearing levels ranges from 0-1 dB at 500 Hz to 1-:6 dB at
8000 Hz. Thus, there was little meaningful difference in the magnitude of the learning effect at
different frequencies. As has been found in previous studies, hearing levels are slightly poorer on
average for the left compared to the right ear (0-4 dB).

Examination of graphs of the estimated residuals and random effects indicates that the amount
of variation increases slightly with age and the amount of spread in the residuals differs among
frequencies. This changing variation is not so dramatic as to cast doubt on the linear mixed-
effects analysis. In any case, the estimate of the fixed effects parameters remains consistent!?1¢
and hence we estimate the mean curve correctly.

CONSTRUCTING PERCENTILES
Initial Percentiles

The marginal distribution of the vector y is’
y ~N(XB, 6% + ZDZ").

We first use this marginal distribution to construct the hearing percentiles by replacing the
parameters by their estimates. In particular, the pth percentile is

XPB + 2, /(6% + ZDZ") 2)

where z, is the pth percentile of a standard normal distribution. These percentiles are calculated
for first age from 25 to 80 years for a number of frequencies (see Figure 1). While we construct the
plots at first age, we set visitl to 0 so that we obtain percentiles of hearing levels that correct for
the learning effects. Note that at a particular frequency the percentiles have constant deviation
from the mean curve at all ages and are symmetric about the mean. This is clearly not a realistic
representation as the amount of spread in hearing level increases with age and the distribution of
hearing level is not symmetric about the mean but is skewed to the right. The amount of spread at
different frequencies differs due to the random In(freq) terms in the mixed-effects model. To serve
as a comparison, we plot the observed hearing levels for the four selected frequencies at first visit
against age at first visit (Figure 2). These observed data show the increasing spread with age as
well as the skewness in the data.

To account for the asymmetry, we transformed the data by adding 15 to the hearing level and
taking logarithms (the smallest hearing levels for these women is — 13). We then refit the linear
mixed-effects model (1) eliminating statistically non-significant terms using backward elimination
as before. The final model for the transformed data contains 30 fixed effects (omitting fixed-effects
terms numbered 12, 16, 20, 22, 23, 24,36 in (1)) and the same 6 random effects. Application of (2) to
the transformed data and transformation back to the original scale produces Figure 3. This graph

© 1997 by John Wiley & Sons, Ltd. Statist. Med., 16, 2475-2488 (1997)
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Figure 1. Percentile curves computed from the linear mixed-effects model with constant variance in residuals and random
effects

shows skewness and non-constant variation due to the transformation. In addition, the median
curve is almost identical to the mean curve from the untransformed data. However, the output
from the model again exhibits non-constant variation in the residuals with first age and frequency
and in the random effects with first age. We use these estimated residuals and random effects from
the model with the transformed data to construct further percentile curves.

Modelling the Non-constant Variance

We relax the restriction that the variance of the error term, o2, and the covariance matrix
of the random effects, D, are constant. This is achieved by modelling the amount of variation
in the residuals as a function of first age and frequency, and the variation in the random
effects as a function of first age. This provides more realistic and useful norms or reference
standards.

Altman® demonstrated how to construct percentiles with non-constant variance from the
linear regression model. Suppose that the residuals plotted against age exhibit changing vari-
ation. Altman’s method models the absolute residuals as a function of age (usually some
low-order polynomial). The mean of the absolute residuals times (7/2)}/? is an estimate of the
standard deviation of the residuals.

Statist. Med., 16, 2475-2488 (1997) © 1997 by John Wiley & Sons, Ltd.
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Figure 2. Observed hearing levels at first visit

In this paper we use three approaches to model the non-constant variance using the absolute
residuals and absolute random effects from the linear mixed-effects model on the transformed
data.

Non-Constant Variance in Population Residuals

As a simple approach for addressing the non-constant variance, we apply Altman’s method to the
population residuals

épi =y — Xiﬁ~

We construct percentiles around the fixed-effects part of the model, y = X ﬁ, with the modified
variation. We use multiple linear regression to model the absolute population residuals as
a function of first age and frequency. We consider polynomial terms up to first age® and In(freq),
as well as all the cross products of these terms. Backward elimination of statistically non-
significant terms (while constraining the model to remain well-formulated) yields the model that
describes the changing standard deviation of the population residuals as a function of first age
and In(freq). First age is again centred by 53 and frequency is expressed in kilohertz. The

© 1997 by John Wiley & Sons, Ltd.
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Figure 3. Percentile curves computed from the linear mixed-effects model for transformed data with constant variance in
residuals and random effects

parameters of the resulting function appear in the first column of Table I. The percentiles for the
transformed data are then:

X ﬁ + z, x 6p(fage, In(freq)).

Figure 4 shows the percentiles for the untransformed data. The percentiles are now wider,
especially at higher ages. However, the population residuals associated with the data obtained
from each woman are not independent. Thus the results of the regression analysis on these
population residuals may not be valid.
Non-Constant Variance in Cluster Residuals and Random Effects
As a second approach, we use the cluster (person specific) residual

é =y —Xiﬁ—zi5i~ A3)

The LME model assumes that var(e;) = 621, so that the errors for an individual’s measurements
are independent. While the cluster residuals are not independent, they do have very small
correlations so that the independence assumption of linear regression is not violated adversely.

Statist. Med., 16, 2475-2488 (1997) © 1997 by John Wiley & Sons, Ltd.




CONSTRUCTION OF HEARING PERCENTILES 2483

Table I. Parameter estimates of the standard deviation function of the residuals. The parameters for the
regressions on absolute residuals must be multiplied by (n/2)!/? to obtain the estimated standard deviation
function

Variable Regression on absolute Regression on absolute
population residuals cluster residuals

WLS regression on
absolute cluster residuals

Intercept 0-2980543 0-1768215 0-1764454
fage 0-00070201 — 0-000925408 — 0-000954173
fage? 0-0000047865 — 0-0000158289 — 0-000015658
fage? — 0-0000002004 — 0-0000003126 — 0-0000002509
In(freq) 0-01587456 0-017246286 0-01733571
In?(freq) —0-017806145 — 0-0026337024 — 0002667801
In3(freq) 0-00223408 — 0-006379758 — 0-006341108
fage x In(freq) 0-000114931 — 0-000520406 — 0-0005274326
fage x In?(freq) — 0-000239387 — 0000136155 — 0-0001302225
fage x In3(freq) 0-0001810754 0-000013536 0-0001348578
fage? x In(freq) 0-00005394 0-0000164459 0-0000166894
fage? x In?(freq) 0-0000118212 0-0000071263 0-0000067064
fage? x In3(freq) — 0-0000285415 — 0-0000072157 — 0-0000071340
fage? x In(freq) — 0:0000002949

fage® x In?(freq) — 0-0000011018

We model the variance in the cluster residual as a function of first age and In(freq) as in the
previous section to obtain g(fage, In(freq)).

The estimates of the random effects are empirical Bayes’ estimates,’ b, = DZIW,(y: — X ,-ﬁ)
where W; = (621 + Z,DZ})~'. We model the non-constant variance in these random effects in
a similar fashion. We model each of the absolute estimated random effects as a function of first
age (a polynomial of order at most 3). We assume that the correlation structure remains constant
over the age span. The covariance matrix is decomposed as

D(fage) = cov(b;) = V Y2corr(b;) V2 = S corr(b;)S 4)

where V12 = § = diag(so(fage), s, (fage), ..., s, (fage)) is a g x g diagonal matrix whose diag-
onal elements are the standard deviations of the g random effects as functions of first age. The
variance of the marginal distribution is then calculated as:

var(y) = é(fage, In(freq))*I + ZD(fage)Z"

where D(fage) is decomposed as in (4). The second column of Table I gives the estimated
coefficients of the standard deviation function for the cluster residuals and the first column of
Table II gives the estimated coefficients of the standard deviation functions for each of the
random effects. The estimated standard deviations for the random effects intercept and In?(freq)
increase with first age, remain constant for time and In*(freq), and decrease for ear. While for
some of these random effects the variance remains constant or even decreases on the transformed
scale, once we transform the data back to the original scale they will exhibit increasing variation
since the hearing level increases with age. The percentiles on the transformed scale are

XPB + zp x /{6 (fage, In(freq))*I + ZD(fage)Z"}.
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Figure 4. Percentile curves computed from the non-constant standard deviation function in the population residuals for
transformed data computed from regressions using the absolute values of the population residuals

Table II. Parameter estimates of the standard deviation functions of the random effects. The
parameters for the regressions on absolute random effects must be multiplied by (7/2)'/? to
obtain the estimated standard deviation functions

Random effect Variable Regression on absolute WLS regression on
random effects absolute random effects
bo-Intercept Intercept 0-21071335 0-21192842
fage 0-00192444 0-00206399
b,-Ear Intercept 0-063431 0-06338411
fage — 0-00045033 — 0-00041733
b,-Time Intercept 0-01790994 0-0165208456
fage — 0-0001125164
bs-In(freq) Intercept 0-159129 0-15962
fage
ba-In?(freq) Intercept 0-07547885 0-07576808
fage 0-00046646 0-00044405
bs-In(freq) Intercept 0-04363397 0-04474316
fage
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Figure 5. Percentile curves computed from the non-constant standard deviation functions for the cluster residuals
and random effects for transformed data computed from regressions using the absolute values of the cluster residuals and
random effects

Figure 5 shows these percentiles on the original scale which appear very similar to those in

Figure 4.

Non-Constant Variance in Cluster Residuals and Random Effects: Weighted Least Squares

This approach is similar to the method in the previous section but uses weighted least squares to
perform the regressions. The weights are the reciprocal of the estimated standard deviations of the
cluster residuals and random effects. To assess the error in the estimation of the random effects,

Laird and Ware” suggest the use of

COV(bAi - bl) = ﬁ - DAZ;F {Wl - WiXi <

We can write the cluster residual in (3) as

M -1
Y X,-TWiX,-> XiTWl} Z.D.

i=1

é;=yi— Xiﬁ) - ZiDZiT Wiy — Xiﬁ) = — ZiljZiT Wi (yi — Xiﬁ)

© 1997 by John Wiley & Sons, Ltd.
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Figure 6. Percentile curves computed from the non-constant standard deviation functions for the cluster residuals and
random effects for transformed data computed from regressions using the absolute values of the cluster residuals using
weighted least squares

so that
cov(é,) = (I — Z,DZTW)H)W ' — X,cov(B) XN — Z,DZTW ).

We use the reciprocals of the square root of the variances from the diagonals of these matrices to
provide the weights for the weighted least squares. The coefficients of these regressions are in
column 3 of Table I and column 2 of Table II. The results are almost identical to the unweighted
least squares calculations except that the regression for the random effect for time decreases with
first age. Figure 6 shows these percentiles which are almost identical to those in Figure 5 at the
frequencies shown. Thus, in this example, use of weighted least squares has little effect on the
estimates of the standard deviation functions.

CONCLUSIONS

We have presented several methods of constructing percentiles based on the output from the
linear mixed-effects model when the amount of variability is not constant. We investigated both
non-constant variability in the population residuals as well as in the cluster residuals and random
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effects. The population residuals are not independent for data associated with an individual and
so we violate the assumptions of linear regression. Our study included subjects with diverse
numbers of observations, but the extra effort needed to compute the variances of the cluster
residuals and random effects to perform a weighted least squares did not produce percentiles that
differed much from the least squares results. Based on these comments, we recommend modelling
the absolute cluster residuals and absolute random effects using least squares linear regression to
construct the percentile plots. In addition, the percentiles constructed using this method (Figure
5) match well the original first visit data (Figure 2).

Proc Mixed in SAS'” may also be used to fit the linear mixed-effects model. Proc Mixed
allows for a number of covariance structures for the random effects and for the error term.
However, these covariance structures are not flexible enough to allow for the modelling of the
changing variability in the random effects and errors as a function of age and In(freq) while
keeping the correlation structure between the random effects the same over the age and frequency
domains.
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